The following entry is adapted from a paper I wrote recently for my NIAC grant, explaining why planar assembly, a new way to build large products from nano-sized building blocks, is better and simpler than convergent assembly. -- Chris Phoenix
History
Molecular manufacturing promises to build large quantities of nano-structured material, quickly and cheaply. However, achieving this requires very small machines, which implies that the parts produced will also be small. Combining sub-micron parts into kilogram-scale machines will not be trivial.
In Engines of Creation (1986), Drexler suggested that large products could be built by self-contained micron-scale "assembler" units that would combine into a scaffold, take raw materials and fuel from a special fluid, build the product around themselves, and then exit the product, presumably filling in the holes as they left. This would require a lot of functionality to be designed into each assembler, and a lot of software to be written.
In Nanosystems (1992), Drexler developed a simpler idea: convergent assembly. Molecular parts would be fabricated by mechanosynthesis, then placed on assembly lines, where they would be combined into small assemblages. Each assemblage would move to a larger line, where it would be combined with others to make still larger concretions, and so on until a kilogram-scale product was built. This would probably be a lot simpler than the self-powered scaffolding of Engines, but implementing automated assembly at many different scales for many different assemblages would still be difficult.
In 1997, Ralph Merkle published a paper, "Convergent Assembly", suggesting that the parts to be assembled could have a simple, perhaps even cubical shape. This would make the assembly automation significantly less complex. In 2003, I published a very long paper analyzing many operational and architectural details of a kilogram-per-hour nanofactory. However, despite 80 pages of detail, my factory was limited to joining cubes to make larger cubes. This imposed severe limits on the products it could produce.
In 2004, a collaboration between Drexler and former engineer John Burch resulted in the resurrection of an idea that was touched on in Nanosystems: instead of joining small parts to make bigger parts through several levels, add small parts directly to a surface of the full-sized product, extruding the product [38 MB movie] from the assembly plane. It turns out that this does not take as long as you'd expect; in fact, the speed of deposition (about a meter per hour) should not depend on the size of the parts, even for parts as small as a micron in size.
Problems with Earlier Methods
In studying molecular manufacturing, it is common to find that problems are easier to solve than they initially appeared. Convergent assembly requires robotics in a wide range of scales. It also needs a large volume of space for the growing parts to move through. In a simple cube-stacking design, every large component must be divisible along cube boundaries. This imposes constraints on either the design or the placement of the component relative to the cube matrix.
Another set of problems comes from the need to handle only cubes. Long skinny components have to be made in sections and joined together, and supported within each cube. Furthermore, each face of each cube must be stiff, so as to be joined to the adjacent cube. This means that products will be built solid: shells or flimsy structures would require interior scaffolding.
If shapes other than cubes are used, assembly complexity quickly increases, until a nanofactory might require many times more programming and design than a modern "lights-out" factory.
However, planar assembly bypasses all these problems.
Planar Assembly
The idea of planar assembly is to take small modules, all roughly the same size, and attach them to a planar work surface, the working plane of the product under construction. In some ways, this is similar to the concept of 3D inkjet-style prototyping, except that there are billions of inkjets, and instead of ink droplets, each particle would be molecularly precise and could be full of intricate machinery. Also, instead of being sprayed, they would be transported to the workpiece in precise and controlled trajectories. Finally, the workpiece (including any subpieces) would be gripped at the growing face instead of requiring external support.
Small modules supplied by any of a variety of fabrication technologies would be delivered to the assembly plane. The modules would all be of a size to be handled by a single scale of robotic placement machinery. This machinery would attach them to the face of a product being extruded from the assembly plane. The newly attached modules would be held in place until yet newer modules were attached. Thus, the entire face under construction serves as a "handle" for the growing product. If blocks are placed face-first, they will form tight parallel-walled holes, making it hard to place additional blocks; but if the blocks are placed corner-first, they will form pyramid-shaped holes for subsequent blocks to be placed into. Depending on fastening method, this may increase tolerance of imprecision and positional variance in placement.
The speed of this method is counterintuitive; one would expect that the speed of extrusion would decrease as the module size decreased. But in fact, the speed remains constant. For every factor of module size decrease, the number of placement mechanisms that can fit in an area increases as the square of that factor, and the operation speed increases by the same factor. These balance the factor-cubed increase in number of modules to be placed. This analysis breaks down if the modules are made small enough that the placement mechanism cannot scale down along with the modules. However, sub-micron kinematic systems are already being built via both MEMS and biochemistry, and robotics built by molecular manufacturing should be better. This indicates that sub-micron modules can be handled.
Advantages of Planar Assembly
This approach requires only one level of modularity from nanosystems to human-scale products, so it is simpler to design. Blocks (modules) built by a single fabrication system can be as complex as that system can be programmed to produce. Whether the feedstock producing system uses direct covalent deposition or guided self-assembly to build the nanoblocks, the programmable feature size will be sub-nanometer to a few nanometers. Since a single fabrication system can produce blocks larger than 100 nanometers, a fair amount of complexity (several motors and linkages, a sensor array, or a small CPU) could be included in a single module.
Programmable, or at least parameterized, (or at worst case, limited-type) modules would then be aggregated into large systems and "smart materials". Because of the molecular precision of the nanoblocks, and because of the inter-nanoblock connection, these large-scale and multi-scale components could be designed without having to worry about large-scale divisions and fasteners, which are a significant issue in the convergent assembly approach (and also in contemporary manufacturing).
Support of large structures will be much easier in planar assembly than in convergent assembly. In simplistic block-based convergent assembly, each structure (or cleaved subpart thereof) must be embedded in a block. This makes it impossible to build a long thin structure that is not supported along each segment of its length, at least by scaffolding.
In planar assembly, such a structure can be extruded and held at the base even if it is not held anywhere else along its length. The only constraint is the strength of the holding mechanism vs. the forces (vibration and gravity) acting on the system; these forces are proportional to the cube of size, and rapidly become negligible at smaller scales. In addition, the part that must be positioned most precisely -- the assembly plane -- is also the part that is held. Positional variance at the end of floppy structures usually will not matter, since nothing is being done there; in the rare cases where it is a problem, collapsible scaffolds or guy wires can be used. (The temporary scaffolds used in 3D prototyping have to be removed after manufacture, so are not the best design for a fully automated system.)
This indicates that large open-work structures can be built with this method. Unfolding becomes much less of an issue when the product is allowed to have major gaps and dangling structures. The only limit on this is that extrusion speed is not improved by sparse structures, so low-density structures will take longer to build than if built using convergent assembly.
Surface assembly of sub-micron blocks places a major stage of product assembly in a very convenient realm of physics. Mass is not high enough to make inertia, gravity, or vibration a serious problem. (The mass of a one-micron cube is about a picogram, which under 100 G acceleration would experience a nanoNewton of force. This is comparable to the force required to detach 1 square nanometer of van der Waals adhesion (tensile strength 1 GPa, Nanosystems 9.7.1). Resonant frequencies will be on the order of MHz, which is easy to isolate/damp.) Stiffness, which scales adversely with size, is significantly better than at the nanoscale. Surface forces are also not a problem: large enough to be convenient for handling -- instead of grippers, just put things in place and they will stick -- but small enough that surfaces can easily be separated by machinery. (The problems posed by surface forces in MEMS manipulation are greatly exacerbated by the crudity of surfaces and actuation in current technology. Nanometer-scale actuators can easily modulate or supplement surface forces to allow convenient attachment and release.)
Sub-micron blocks are large enough to contain thousands or even millions of features: dozens to thousands of moving parts. But they are small enough to be built directly out of molecules, benefiting from the inherent precision of this approach as well as nanoscale properties including superlubricity. If blocks can be assembled from smaller parts, then block fabrication speed can improve.
Centimeter-scale products can benefit from the ability to directly build large-scale structures, as well as the fine-grained nature of the building blocks (note that a typical human cell is 10,000-20,000 nm wide). For most purposes, the building blocks can be thought of as a continuous smooth material. Partial blocks can be placed to make the surfaces smoother -- molecularly smooth, except perhaps for joints and crystal atomic layer steps.
Modular Design Constraints
Although there is room for some variability in the size and shape of blocks, they will be constrained by the need to handle them with single-sized machinery. A multi-micron monolithic subsystem would not be buildable with this manufacturing system: it would have to be built in pieces and assembled by simple manipulation, preferably mere placement. The "expanding ridge joint" system, described in my Nanofactory paper, appears to work for both strong mechanical joints and a variety of functional joints.
Human-scale product features will be far too large to be bothered by sub-micron grain boundaries. Functions that benefit from miniaturization (due to scaling laws) can be built within a single block. Even at the micron scale, where these constraints may be most troublesome, the remaining design space is a vast improvement over what we can achieve today or through existing technology roadmaps.
Sliding motion over a curved unlubricated surface will not work well if the surface is composed of blocks with 90 degree corners, no matter how small they are. However, there are several approaches that can mitigate this problem. First, there is no requirement that all blocks be complete; the only requirement is that they contain enough surface to be handled by assembly robotics and joined to other blocks. Thus an approximation of a smooth curved surface with no projecting points can be assembled from prismatic partial-cubes, and a better approximation (marred only by joint lines and crystal steps) can be achieved if the fabrication method allows curves to be built. Hydrodynamic or molecular lubrication can be added after assembly; some lubricant molecules might be built into the block faces during fabrication, though this would probably have limited service life. Finally, in clean joints, nanoscale machinery attached to one large surface can serve as a standoff or actuator for another large surface, roughly equivalent to a forest of traction drives.
The grain scale may be large enough to affect some optical systems. In this case, joints like those between blocks can be built at regular intervals within the blocks, decreasing the lattice spacing and rendering it invisible to wave propagation.
See the original NIAC paper for discussion of factory architecture and extrusion speed.
Conclusion and Further Work
Surface assembly is a powerful approach to constructing meter-scale products from sub-micron blocks, which can themselves be built by individual fabrication systems implementing molecular manufacturing or directed self-assembly. Surface assembly appears to be competitive with, and in many cases preferable to, all previously explored systems for general-purpose manufacture of large products. It is hard to find an example of a useful device that could not be built with the technique, and the expected meter-per-hour extrusion rate means that even large products could be built in their final configuration (as opposed to folded).
What this means is that, once we have the ability to build billion-atom (submicron) blocks of nanomachinery, it will be straightforward to combine them into large products. The opportunities and problems of molecular manufacturing can develop even faster than was previously thought.
Recent Comments